Arm凭啥成为移动芯片霸主?
发表于2020-03-29 14:14:14

  原标题:Arm凭啥成为移动芯片霸主?

  每当您想到移动计算硬件时,Arm就有可能成为第一个想到的公司,或者应该是。尽管从历史上看,英特尔一直被公认为是芯片制造领域的领导者-直到今天仍然如此-多年来,Arm逐渐步入了一个利基市场,最终达到了一个拐点,在那里,计算设备不再需要更快,但他们需要更加高效和便携。

  几乎所有主要的发布都建立在其架构之上,这就是为什么Arm在移动处理器市场上占据主导地位。我们正在谈论在嵌入式应用程序,生物识别系统,智能电视,iPhone,笔记本电脑和平板电脑上使用的数十亿芯片。但是,为什么会这样呢?为什么像x86之类的其他体系结构无法发挥作用呢?在本文中,我们将为您提供Arm的概念,它的起源以及为什么它如此流行的技术概述。

  首先要注意的是,Arm实际上并没有制造处理器。取而代之的是,他们设计CPU的体系结构,并将这些设计授权给其他公司,例如将其纳入其处理器的高通公司或三星公司。由于它们都使用通用标准,因此在Qualcomm Snapdragon处理器上运行的代码也将在Samsung Exynos处理器上运行。

  什么是ISA(指令集体系结构)?

  每个计算机芯片都需要一个ISA才能起作用,而这正是Arm所代表的。要详细了解CPU在内部的工作方式,必须阅读我们的CPU设计系列。解释Arm的第一步是了解ISA的确切含义。

  它不是像高速缓存或内核那样的物理组件,而是定义了处理器各个方面的工作方式。这包括诸如芯片可以处理哪种类型的指令,应该如何格式化输入和输出数据,处理器如何与RAM交互等等。另一种思考的方式是,ISA是一组规范,而CPU是这些规范的实现。这是CPU如何工作的蓝图。

  例如,ISA使用64位模型指定每条数据的大小,而最现代的数据则由ISA指定。虽然所有处理器都执行读取指令,执行这些指令并根据结果更新其状态的三个基本功能,但不同的ISA可能会进一步分解这些步骤。诸如x86之类的复杂ISA通常会将此过程分为数十个较小的操作,以提高吞吐量。ISA还指定了其他任务,例如条件指令的分支预测和预取将来的数据。

  除了定义处理器的微体系结构之外,ISA还可以指定一组可以处理的指令。指令是CPU在每个周期执行的内容,由编译器产生。指令的类型很多,例如存储器读/写,算术运算,分支/跳转运算等等。一个示例可能是“将内存地址1的内容添加到内存地址2的内容并将结果存储在内存地址3中”。

  每个指令的长度通常为32或64位,并具有多个字段。最重要的是操作码,它告诉处理器它是哪种特定类型的指令。一旦处理器知道下一步要执行的指令类型,它将获取该操作所需的相关数据。数据的位置和类型将在操作码的另一部分给出。这是一些指向Arm和x86操作码列表的链接。

  RISC与CISC

  既然我们对ISA是什么和做什么有了一个基本的了解,让我们开始研究什么使Arm特别。最重要的功能是Arm是RISC(精简指令集计算)体系结构,而x86是CISC(复杂指令集计算)体系结构。这是处理器设计的两个主要范例,各有千秋。

  使用RISC架构,每条指令直接指定CPU要执行的动作,并且它们是相对基本的。另一方面,CISC体系结构中的指令更复杂,并且为CPU指定了更广泛的概念。这意味着CISC CPU通常会将每个指令进一步细分为一系列微操作。CISC体系结构可以将更多细节编码为一条指令,从而可以大大提高性能。例如,根据数据类型和其他计算参数,RISC体系结构可能仅包含一个或两个“添加”指令,而CISC体系结构可能具有20个指令。RISC和CISC之间的更详细比较可以在此处找到。

投稿:lukejiwang@163.com
Copyright © 2002-2024 鹿科技